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Abstract: Validation of quantitative structure-activity relationship (QSAR) models plays a key role for the selection of 
robust and predictive models that may be employed for further activity prediction of new molecules. Traditionally, QSAR 
models are validated based on classical metrics for internal (Q2) and external validation (R2

pred). Recently, it has been 
shown that for data sets with wide range of the response variable, these traditional metrics tend to achieve high values 
without truly reflecting absolute differences between the observed and predicted response values, as in both cases the 
reference for comparison of the predicted residuals is the deviations of the observed values from the training set mean. 
Roy et al. have recently developed a new parameter, modified r2 (rm

2), which considers the actual difference between the 
observed and predicted response data without consideration of training set mean thereby serving as a more stringent 
measure for assessment of model predictivity compared to the traditional validation parameters (Q2 and R2

pred). The rm
2 

parameter has three different variants: (i) rm
2

(LOO) for internal validation, (ii) rm
2

(test) for external validation and (iii) 
rm

2
(overall) for analyzing the overall performance of the developed model considering predictions for both internal and 

external validation sets. Thus, the rm
2

 metrics strictly judge the ability of a QSAR model to predict the activity/toxicity of 
untested molecules. The present review provides a survey of the development of different rm

2
 metrics followed by their 

applications in modeling studies for selection of the best QSAR models in different reports made by several workers. 
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INTRODUCTION 

 The quantitative structure-activity relationship (QSAR) 
technique plays a crucial role in drug design and 
ecotoxicological modeling. Remarkable advances in the field 
of computer sciences over the past decades gave rise to many 
new possibilities including the ability to simulate and model 
life’s phenomena. Prediction of biological and physical 
properties of chemical compounds has a long history starting 
with the linear regression models of Hansch [1] developed 
during the 1960s. Since then for more than 40 years, QSAR 
models constitute a major topic in the field of scientific 
research involving drug design and development and toxicity 
modeling. The goal of such modeling is to develop 
statistically acceptable relationship between the molecular 
structure and biological activity or toxicity or physical 
property of chemical entities. The molecular properties are 
calculated based on the molecular structures and are 
represented as numerical parameters called descriptors [2]. 
The descriptors encode various molecular features such as 
the hydrophobic, steric and electronic properties that 
influence the biological activity or toxicity or property of the 
molecules under study. These descriptors are then correlated 
with the corresponding activity/toxicity/property data of the 
molecules for the development of a QSAR model. With the 
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use of relevant and meaningful descriptors and a statistically 
significant QSAR model, it is possible to achieve an insight 
as to what makes a molecule active or inactive. A QSAR 
model that has been able to capture most of the significant 
correlations between the structural features and the activity 
of the molecules may be successfully utilized for 
activity/property prediction of new molecules belonging to 
the same class as those used for the development of the 
QSAR model [3,4]. Thus a predictive QSAR model provides 
an insight about the structure-activity relationships (SAR) of 
the molecules used for modeling. Analyses of QSAR models 
based on relevant descriptors are also useful for improvising 
necessary structural requirements for activity enhancement 
or toxicity reduction of the molecules under study as well as 
for explanation of outliers. 

 The QSAR technique has been used extensively in a 
variety of disciplines like drug discovery and lead 
optimization, risk assessment and toxicity prediction, 
regulatory decisions and agrochemicals [5-7]. Many 
thousands of QSAR and QSPR (quantitative structure-
property relationship) models have been developed since 
1962, covering a wide variety of endpoints and statistical 
techniques to assess the fitness and validity of significant 
correlations. Subsequently, guidance for the correct 
procedures in the development of QSAR/QSPR models has 
been offered in a number of publications [8-13]. Despite 
extensive use of QSAR, only recently significant attention 
has been directed towards validation of the developed QSAR 
models. Stringent parameters have been employed for 
extensive validation of the selected QSAR models. The 
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validity of a QSAR model is assessed based on four prime 
tools [14]: (i) cross-validation, (ii) bootstrapping, (iii) 
randomization of the response data, (iv) external validation 
by splitting of set of compounds into a training set and a test 
set followed by confirmation using an independent external 
validation set or using a designed validation set. In order to 
have a sound scientific basis for implementation of QSAR 
models for regulatory use, the REACH (Registration, 
Evaluation, and Authorization of Chemicals) [15-17] 
legislation enforced in the European Union inferred that 
QSARs need to be assessed in terms of their scientific 
validity. The principles for assessing the validity of QSAR 
models were proposed at an International workshop held in 
Setubal (Portugal) in March 2002 and were further modified 
in 2004 by the Organisation for Economic Co-operation and 
Development (OECD) Work Programme on QSAR 
techniques [18]. 

 Recently, there has been a great deal of controversy 
regarding selection of the most suitable technique for 
validation of a QSAR model [19]. According to one group of 
authors [20], internal validation solely serves as a sufficient 
criterion for selection of the statistically significant QSAR 
model provided that such internal validation is done 
properly. According to them, splitting of the dataset 
performed during external validation may result in loss of 
information utilized for the development of the model. The 
model developed based on the reduced training set may lack 
significant data regarding the molecular properties of the 
chemical entities. On the contrary, another group of authors 
state that a QSAR model can only be considered acceptable 
based on its ability to predict the activity/property of 
untested molecules. According to Hawkins et al. [20], model 
fit can be best assessed using the crossvalidation technique 
and it enables to check whether the predictions will carry 
over to new untested data not used in the model fitting 
process. Hawkins et al. [20] proposed that, in case of a small 
dataset, holding a portion of the set as test set is insignificant 
and wasteful. However according to Golbraikh and Tropsha 
[21], a QSAR model developed using a known set of 
chemical entities must be validated based on a validation set 
(test set) of molecules that has not been included for the 
development of the QSAR model. They proposed several 
stringent parameters and the QSAR models exceeding the 
threshold values for each of these parameters can only be 
considered satisfactory for activity prediction of new 
molecules.  

 Viewing the controversy between the internal and 
external techniques, it is more convenient to apply both of 
the validation techniques for selection of a statistically 
significant QSAR model. However, the external predictive 
parameter (R2

pred) is largely dependent on the selection of the 
training set compounds. Moreover, the selection of the most 
significant QSAR model often becomes difficult in cases 
where comparable models are obtained with different 
qualities for the internal (Q2) and external (R2

pred) predictive 
parameters. An alternative measure rm

2 was suggested to be a 
better metric for selection of QSAR models [22-24]. Two 
variants of rm

2 have been reported by Roy et al. [22, 23]: (i) 
rm

2
(LOO) and rm

2
(test). These two parameters are used for 

judging the internal and external predictivity of the model 

using the training and test sets respectively. Again, a third 
parameter, rm

2
(overall) has also been developed by Roy et al. 

[23] which may be effectively applied on the whole dataset 
considering LOO-predicted values for the training set and 
predicted values of the test set compounds. Thus, this 
parameter rm

2
(overall) analyses the developed QSAR model 

based on both internal and external validation statistics 
thereby providing an overall measure of the model predictive 
ability. Subsequently, selection of the best predictive models 
from among comparable ones may be performed based on 
the rm

2
(overall) statistic. The rm

2 metric (rm
2

(test) in particular) has 
been extensively used in different reports for validation 
purpose. The present review provides an outline of the work 
involving the development of the rm

2 metrics followed by its 
application for statistical validation of QSAR models. 

DEVELOPMENT OF THE rm
2 METRICS 

 The success of any QSAR model depends on accuracy of 
the input data collection, selection of suitable descriptors and 
statistical tools and most importantly the validation of the 
developed model. Several rules and conditions have been 
adopted in order to ensure selection of meaningful 
descriptors from the range of descriptors belonging to 
different category. According to Topliss, a comparison 
between the number of variables included in the final model 
and the number of compounds used for building the model 
[25] determines the degree of chance correlation, which 
further increases with an increase in the number of variables. 
Consequently, the reliability and accuracy of a QSAR model 
development procedure are established through appropriate 
validation of the process involved in developing the QSAR 
model and thus the validation step plays the most important 
role in the QSAR model building process [26-34]. Hence, 
the models should be validated both internally and externally 
in order to check their robustness and predictive potential.  

 The internal validation procedure involves the leave-one-
out (LOO) or leave-many-out (LMO) cross-validation 
technique followed by the calculation of the cross-validated 
squared correlation coefficient, LOO-Q2 or LMO-Q2 [19, 
35]. These techniques involve removal of one or group of 
compounds from the training set followed by development of 
the QSAR model based on the reduced dataset. The model 
thus built with the remaining molecules is used to predict the 
activity of the deleted compound/compounds. This cycle is 
repeated till all the molecules of the dataset have been 
deleted once. The cross-validated squared correlation 
coefficient (LOO-Q2 or LSO-Q2) is calculated according to 
the following formula (Eq. 1). 

Q
2
= 1!

(Yobs(train) !Y pred(train) )
2

"
(Yobs(train) !Y training )

2

"
         (1) 

 In the above equation, Yobs(train) is the observed activity 
(training set), Ypred(train) is the predicted activity of the 
training set molecules based on the LOO/LMO technique 
while trainingY  is the mean activity data of the training set 
compounds. A model is considered to be satisfactory if the 
value of Q2 exceeds the stipulated value of 0.5. Moreover, 
although a high value of LOO-Q2 appears to be a necessary 
criterion but it is not sufficient enough for ensuring model 
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predictivity [36]. A problem with LOO cross-validation is 
that a small change in the data can cause a huge variation in 
the type of QSAR model selected [37]. Thus, a QSAR or 
QSPR model is chiefly valued in terms of its predictivity, 
indicating its ability to predict the response parameters for 
compounds not used in developing the correlation, i.e. 
molecules not included in the training set. Such a procedure 
for checking model predictivity based on molecules not 
included in the training set is referred to as external 
validation. 

 In many cases, truly external data points become 
unavailable for prediction purpose; thus, the original dataset 
compounds are split into training and test sets where the 
training set is used for building the QSAR model and the 
corresponding test set is used for its subsequent validation. 
The test set may vary in size depending upon the total 
number of compounds in the original dataset [38]. Thus 
proper splitting of the dataset into the corresponding training 
and test sets plays the prime role for the successful 
development of a QSAR model. The training set should be 
selected in such a way that they represent the entire class of 
compounds from which they originate both in terms of the 
chemical features and activity profile. The QSAR model thus 
developed is used for activity prediction of the test set 
molecules followed by the estimation of the external 
predictive parameter (R2

pred) (Eq. 2) [21] which reflects the 
degree of correlation between the observed and predicted 
activity data for the test set molecules, thereby ensuring the 
model predictive ability.  

R
2

pred = 1!
(Yobs(test ) !Y pred(test ) )

2

"
(Yobs(test ) !Y training )

2

"
         (2) 

 In Eq. (2), Yobs(test) and Ypred(test) are the observed and 
predicted activity data respectively for the test set 
compounds. Models with values of R2

pred above the threshold 
value of 0.5 are considered to be well predictive. 

 From the above equations, it can be noted that the values 
of Q2 and R2

pred are dependent on the mean activity value of 
the training set compounds and its distance from each of the 
activity values of the corresponding training and test set 
compounds respectively. As the denominator term in both 
the equations increases [ (Yobserved !Y training )

2

" ], the values of 
the internal and external predictive parameters increase, 
apparently suggesting improved predictive ability of the 
developed QSAR model. Thus, a dataset comprising of 
molecules exhibiting a wide activity range may show 
significantly acceptable values for the two parameters, 
although large differences may exist between the predicted 
and corresponding observed activity values for the training 
and test set molecules. Hence, a large value of Q2 or R2

pred 
does not necessarily indicate that the predicted and the 
observed activity data are in close proximity to each other, 
although there may exist a good overall correlation between 
the values. Thus, to better indicate both the internal and 
external predictive capacities of a QSAR model, a modified 
r2 term (rm

2) [22-24] has been developed by Roy et al. 

r
m

2
= r

2
! 1" r

2
" r

0

2( )                  (3) 

 In Eq. (3), r2 and r0
2 are the squared correlation 

coefficient values between the observed and predicted 
activity data with and without intercept respectively. Models 
with values of the rm

2 metrics above the threshold value of 
0.5 are considered to be good predictive ones. For good 
prediction, the predicted activity values (for both training 
and test sets) should be close to the corresponding observed 
activity data. This results in a decrease in the difference 
between the values of r2 and r0

2. Thus, for the ideal case (best 
prediction), r2 becomes equal to r0

2 and accordingly, rm
2 

equals to r2. On the contrary, for the worst model the value 
of rm

2 tends to zero (or even negative some time). In case of 
internal validation, the rm

2 term is referred to as rm
2

(LOO) and 
is calculated based on the observed and LOO predicted 
activities of the training set compounds. Similarly, in case of 
external validation, the parameter is referred to as rm

2
(test) and 

is determined using the observed and predicted activity data 
of the test set molecules as calculated from the developed 
QSAR model. It can be inferred from the above equation that 
the parameters rm

2
(LOO) and rm

2
(test) solely depend on the 

observed and the predicted activity data of the training and 
test set compounds respectively and any significant 
difference between the observed and predicted activity 
values is well reflected in values of the rm

2 metrics. Another 
variation of the rm

2 metric includes the calculation of the 
‘true rm

2
(LOO)’ parameter based on the model developed from 

the undivided data set after the application of variable 
selection strategy at each cycle of validation. It has been 
shown by Mitra et al. [24] that for a small dataset, the ‘true 
rm

2
(LOO)’ parameter reflects characteristics of external 

validation for the developed QSAR model. In such cases, the 
parameter may be utilized for determining the predictive 
ability and the accuracy of prediction of the developed 
QSAR model.  

 Moreover, the rm
2 statistic is not only applied for 

prediction for the training and test sets individually, it can 
also be extended to the entire dataset combining both the 
training and test sets. According to Roy and coworkers [39], 
this metric can be calculated based on the entire dataset 
considering the LOO predicted activity for the training set 
and predicted activity for the test set compounds. Thus, this 
parameter refers to the overall predictive potential of the 
entire dataset and is represented as rm

2
(overall). The use of 

rm
2

(overall) statistic as a metric for selection of a statistically 
significant QSAR model has two prime advantages. Firstly, 
the rm

2
(overall) metric includes the entire dataset including the 

training and test sets. Thus, unlike internal and external 
validation metrics which are derived from reduced datasets, 
the rm

2
(overall) performs prediction based on comparably larger 

number of compounds thereby imparting greater reliability 
to the assessment of prediction capacity of the QSAR model. 
Additionally, often comparable models are obtained in terms 
of the internal and external validation parameters making it 
difficult to select the best one. Since the rm

2
(overall) parameter 

involves the whole dataset under study, it refers to the 
overall contributions of predictions for both the internal and 
external validation sets. It thus enables selection of the most 
significant QSAR model based on the predictive ability of 
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the model for the whole dataset. Finally, it may be inferred 
that the parameters rm

2
(LOO) and rm

2
(test), being independent of 

the range of activity data of the compounds under study, 
serve as stricter metrics than Q2 and R2

pred for internal and 
external validations respectively. Moreover, the parameter 
rm

2
(overall) is unique in terms of its ability to estimate the 

overall predictive ability of the model for the class of 
compounds used for the study irrespective of their 
classification into training and test sets. 

APPLICATION OF THE rm
2 METRICS FOR THE 

VALIDATION OF STATISTICALLY SIGNIFICANT 
QSAR MODELS 

 The rm
2 metrics have been used widely by several authors 

in the recent QSAR literature to check predictive ability of 
the developed QSAR models. The rm

2
(test) metric analyses the 

models chiefly based on their ability to predict the activity of 
the test set compounds, without any consideration of training 
set mean and thus it enables better screening of the most 
significant QSAR model. This metric was introduced by Roy 
et al. [22] in 2008. The authors explored the optimum 
variable selection strategy for Partial Least Squares (PLS) 
regression technique using a model dataset of cytoprotection 
data and finally ended up with the development of a new 
parameter, rm

2
(test), for checking external predictability of the 

QSAR models. The work has been performed by dividing 
the whole dataset into ten different combinations of training 
and test sets using the k-means clustering technique followed 
by the development of PLS models. The models were 
developed with number of PLS components optimized by the 
LOO-Q2 and were subsequently validated (externally) using 
the corresponding test set compounds. From the study, it was 
concluded that model performance chiefly depends on the 
type of training set selected for fitting the model. Moreover, 
according to this work, the parameter R2

pred should not be 
considered as the ultimate criterion for indicating the 
external predictability of a model since a clear separation 
between the curves of r2 and r0

2 in some trials suggested that 
such models might not be truly predictive in spite of bearing 
acceptable values of R2

pred. Thus, to truly explore the 
predictive potential of a QSAR model, the difference in the 
values of r2 and r0

2 should be small and the extent of this 
difference is reflected in the value of the rm

2
(test) parameter, 

the threshold of 0.5 for which is considered acceptable.  

 In another paper, Roy et al. [39] introduced the concepts 
of rm

2
(LOO) and rm

2
(overall) parameter. In a comparative QSAR 

study of CYP1A2 inhibitor flavonoids using 2D and 3D 
descriptors, the authors employed the rm

2 metrics for the 
selection of the final statistically significant QSAR models. 
This work reveals that the concept rm

2 may be well extended 
beyond only test set prediction and can be utilized for 
training set prediction if one considers the correlation 
between observed and LOO-predicted values. Moreover, the 
concept can also be used for the whole set considering LOO-
predicted values for the training set and predicted values of 
the test set compounds. Thus, the G/PLS model developed 
using the 2D descriptors, among all the developed models, 
exhibited maximum values for these three parameters [rm

2
(test) 

= 0.685, rm
2

(LOO) = 0.736, rm
2

(overall) = 0.695] and thus, it was 
selected as the best one. On the contrary, although models 
developed with the 3D descriptors exhibited statistically 

acceptable values for the Q2 and R2
pred metrics, these were 

considered as unreliable models as none of them were able to 
attain the stipulated value for the rm

2
(overall) parameter. The rm

2 

metrics thus indicate the predictive ability of the model both 
in terms of internal and external validation measures and the 
results obtained in the work indicate a close correspondence 
between the observed and corresponding predicted activity 
data for both the training and test sets. However, it is to be 
noted that in cases where more number of compounds are 
included in the modeling set while splitting of a dataset, the 
value of rm

2
(overall) leans towards the efficiency of the model 

for activity prediction of the training set molecules to a 
greater extent compared to that for the test set molecules. 

 In yet another paper, Roy et al. [23] elaborated the 
concepts of the rm

2 metrics based on three different datasets 
each of which was divided into 50 different combinations of 
training and test sets, and each model thus obtained was 
validated based on internal and external validation measures. 
In case of the results obtained for the first dataset, it was 
observed that though some of models exceeded the stipulated 
values of the traditional validation parameters, but none of 
them satisfied the value of rm

2
(overall). This may be explained 

by the fact that high values of Q2 and R2
pred are obtained as 

long as a good correlation exists between the observed and 
predicted activity data of the training and test sets 
respectively but this does not necessarily mean that the 
predicted values are very close to the corresponding 
observed ones. The rm

2
(overall) statistic, being entirely 

dependent on the observed and predicted activity data, 
rightly reflects a difference between the observed and 
predicted activity values. Again in case of the 2nd dataset, 
due to the wide distribution of the ovicidal activity among 
the congeners, acceptable values of the two parameters, Q2 
and R2

pred were obtained in spite of considerable differences 
in numerical values of the observed and predicted activities 
for some compounds. Due to large differences in the values 
of the observed and predicted activity data, none of the 
models could attain the threshold value for the rm

2
(overall) 

parameter and thus these were considered to be non-reliable. 
The results obtained in this work reveal that the values of Q2 
and R2

pred may differ considerably for a given model, i.e., a 
model with a high value of Q2 may show a low value for 
R2

pred and vice versa. The rm
2

(overall) metric takes into 
consideration both the internal and external validation 
measures and penalizes a model for a difference in the values 
of the two parameters. Again in case of the 3rd dataset, most 
of the models are acceptable in terms of all the traditional 
validation parameters as well as those developed by Roy et 
al. [22]. Thus in such a case, the selection of the best model 
based on either internal or external predictive parameters 
becomes difficult. Consequently, the rm

2
(overall) parameter 

which takes into consideration the prediction for both the 
training and test sets have been aptly used as the measure for 
QSAR model selection. 

 Roy and Popelier [40] made interesting observations in a 
work involving exploration of predictive QSAR models for 
hepatocyte toxicity of phenols using quantum topological 
molecular similarity (QTMS) descriptors. The QTMS 
descriptors were calculated at different levels of theory 
which include AM1, HF/3-21G(d), HF/6-31G(d), B3LYP/6-
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31+G(d,p), B3LYP/6-311+G(2d,p) and MP2/6-311+G(2d,p) 
followed by the development of models based on these 
descriptors at each level. It was observed that the best model 
at each level was distinguished from others by a close 
proximity between the values of the two external predictive 
parameters, R2

pred and rm
2

(test). Thus, it may be inferred that 
for models having such a close correspondence between the 
two values of R2

pred and rm
2

(test), the activity data predicted 
based on the corresponding models closely match with the 
observed activity values. In another work Roy and Popelier 
[41] also developed predictive QSAR models using QTMS 
descriptors for determining the toxicity of nitroaromatics to 
Saccharomyces cerevisiae. The results were analysed based 
on different internal and external validation techniques. 
However selection of the best model was difficult based on 
the maximum values of Q2 (0.910) and R2

pred (0.971) because 
the model with maximum Q2 value yielded lower value for 
the R2

pred parameter and vice versa. Thus, the value of rm
2

(test) 
was calculated for all the models so as to enable the selection 
of the best developed QSAR model. Based on the results of 
validation and randomization, three best models (model nos. 
1, 7 and 9) were selected to be statistically significant ones. 
It was revealed that the toxicity data predicted for the test set 
molecules using model nos. 1 and 9 were close to the 
observed toxicity values. This observation is well reflected 
in the closely coinciding values of the two external 
predictive parameters, R2

pred and rm
2

(test) for model nos. 1 and 
9. However, in case of model no. 7, the toxicity predicted for 
most of the test set compounds was close to the 
corresponding observed data with the exception of 
compound no. 11. This difference in the observed and 
predicted toxicity value for compound no. 11 remains 
unnoticed during the calculation of the R2

pred parameter 
(which exhibits a maximum value of 0.932 for model no. 7 
among all the acceptable models developed) but is well 
reflected in the reduced value of the rm

2
(test) parameter 

(0.849). Thus, it may be inferred that due to its ability to 
analyse the deviation between the observed and predicted 
activity data of the test set molecules more precisely, the 
rm

2
(test) parameter is a stricter parameter for measuring 

external predictive ability of a QSAR model compared to 
R2

pred. Again, the rm
2

(test) metric has been aptly used in 
developing predictive QSPR modeling of the acidic 
dissociation constant (pKa) of phenols in different solvents 
by Roy and Popelier [42] based on QTMS descriptors 
calculated at different levels of theory. The work once again 
suggested that the R2

pred parameter should not be solely used 
as the ultimate criterion for reporting the external predictive 
ability of a QSAR model. Amongst all the developed 
models, the model with maximum R2

pred (0.968) value 
yielded a reduced value for the rm

2
(test) (0.916) parameter 

while that with maximum rm
2

(test) (0.986) value also exhibited 
an appreciably acceptable value for the R2

pred (0.948) 
parameter. Thus the authors used both the parameters for 
judging the external predictivity of the QSAR models and 
the best model for each solvent was selected based on the 
value of rm

2
(test). 

 Several papers reported by Roy et al. utilize the rm
2 

metrics for the selection of the best QSAR models. Roy et al. 
[43] explored 2D and 3D QSARs of 2,4-diphenyl-1,3-
oxazolines for ovicidal activity against Tetranychus urticae 

and employed different validation measures for the selection 
of the best QSAR model. An analysis of the results obtained 
from the validation of the different models revealed that 
although a maximum value of R2

pred (0.755) was obtained for 
the genetic function approximation with spline option (GFA-
spline) model (model 6) developed using the shape, spatial, 
electronic and physicochemical descriptors, the authors 
reported model 4 as the most significant one (GFA-spline 
model developed using the topological, structural and 
physicochemical descriptors). Such a selection of the best 
model was performed based on the rm

2
(overall) parameter. 

Despite bearing the maximum value for the R2
pred (0.755) 

parameter, model 6 exhibits a lower value for the rm
2

(overall) 
(0.526) parameter. On the contrary, model 4 yielding the 
maximum value for the rm

2
(overall) (0.535) parameter was 

selected as the most significant QSAR model. As the 
rm

2
(overall) metric takes into consideration the predicted and 

observed activity data of both the training and test sets and 
does not depend on the range of activity data like R2

pred, it 
serves as a better measure for the selection of the best QSAR 
model from among comparable ones.  

 In a study involving the development of comparative 
molecular field analysis (CoMFA) and comparative 
molecular similarity indices analysis (CoMSIA) models of 
cytotoxicity data of anti-HIV-1-phenylamino-1H-imidazole 
derivatives by Basu et al. [44], the authors developed the 
models and validated them using 10% and 25% of molecules 
as test set, based on the Database and Field-Fit alignment 
techniques. The authors reported the best QSAR (CoMFA 
analysis using database alignment and employing 25% 
molecules in the test set) based on the values of both R2

pred 
and rm

2 parameters (R2
pred of 0.91 and rm

2 of 0.652). Although 
the CoMSIA model obtained using the same test set also 
yielded a statistically significant value of the external 
predictive parameter (R2

pred=0.789), it could not reach the 
threshold for the modified r2 (rm

2) (0.410) parameter because 
some of the compounds show a marked difference in the 
values of their observed and predicted activity data. Such a 
difference is well reflected in the calculation of rm

2 but is not 
considered in case of R2

pred calculation since the observed 
and predicted activity data maintains a good overall 
correlation between them despite having a significant 
difference in the respective values. Thus, according to these 
authors, the rm

2 metric serves as a helpful technique in 
identifying the best model from amongst many comparable 
models. 

 In another work, Roy et al. [45] dealt with comparative 
chemometric modeling of cytochrome 3A4 inhibitory 
activity of structurally diverse compounds using various 
chemometric techniques. In this work, Roy et al. developed 
different QSAR models which varied in their degree of 
acceptability based on the values of Q2 and R2

pred. The model 
developed using the stepwise-MLR technique showed 
maximum predictivity in terms of the external predictive 
parameter (R2

pred = 0.701), while the model developed using 
the GFA technique yielded maximum value for the internal 
predictive parameter (Q2 = 0.836). Thus, the selection of the 
best QSAR model developed for activity prediction becomes 
difficult. This problem was handled by using calculations 
based on the rm

2 metrics. The results obtained for the rm
2 
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metrics revealed that none of the above mentioned two 
models could achieve high values for these parameters due 
to a significant difference between the observed and 
corresponding predicted activity data for the training and test 
sets. This is not taken into consideration in the calculations 
for Q2 and R2

pred as long as the observed and predicted data 
maintain an overall good correlation among themselves. On 
the contrary, the model developed using the genetic partial 
least squares (G/PLS) technique, although bearing lower 
values for the Q2 (0.827) and R2

pred (0.600) parameters, 
exhibited maximum values for all the rm

2 metrics [rm
2

(LOO) = 
0.771, rm

2
(test) = 0.581, rm

2
(overall) = 0.735] due to a close 

proximity between the observed and predicted activity data 
for the training and test set compounds and thus the model 
was reported as the best model for the work in terms of its 
overall predictive ability. Another work by Roy et al. [46] 
explains the QSAR and quantitative structure activity-
activity relationship (QAAR) studies for inhibitors of 
cytochrome P450 2A6 and 2A5 enzymes using GFA and 
G/PLS techniques. The results obtained in this study once 
again imply the significance of the rm

2
(test) parameter. An 

analysis of model 5 developed in the reported work reveals 
that the model was selected as the best one among all based 
on its internal and external predictive ability. A significant 
difference between the values of the R2

pred and rm
2

(test) 
parameters reflects that the parameter R2

pred overlooks a 
significant difference between the values of the observed and 
corresponding predicted activity data of the test set 
molecules as long a good overall correlation is maintained 
among them, but the rm

2
(test) parameter takes into account 

such difference. 

 Hu et al. [47] employed a variety of chemometric tools 
performing QSAR studies for a series of HIV-1 reverse 
transcriptase inhibitors (2-amino-6-arylsulfonylbenzonitriles 
and their thio and sulfinyl congeners) using topological, 
geometrical, quantum mechanical energy-related and charge 
distribution-related descriptors. Among the compounds used 
for the study, only 64 compounds exhibited IC50 (50% 
inhibitory concentration) values for anti-HIV-1 activity 
while the remaining 51 compounds were provided with IC50 
values for HIV-1 RT binding affinity. Both the activity data 
were modeled separately and the QSAR model obtained with 
the anti-HIV-1 activity using the projection pursuit 
regression (PPR) technique yielded maximum values of the 
squared correlation coefficients (R2) for both the training 
(0.890) and test (0.882) set compounds. Subsequent 
validation of the model based on the rm

2 statistic also yield 
maximum value for the rm

2
(test) (0.660) parameter among all 

the models developed with the same series of activity data. 
Among the predicted activity data computed for the test set 
molecules using this model, compound nos. 53, 58 and 65 
exhibit a comparatively higher range of residual activity 
which accounts for a reduction in the value of the rm

2
(test) 

parameter in comparison to that of the R2
pred parameter 

(yielding a large value of R2
pred due to the wide range of 

activity data of the compounds under study). 

 In several reports, Mitra et al. employed the parameter 
rm

2
(LOO) as a measure for judging the predictive ability of the 

developed QSAR models. While analyzing QSAR models 
for the antioxidant activity of hydroxybenzalacetones, Mitra 

et al. [48] was unable to perform external validation due to 
lack of enough data for splitting the dataset into training and 
test sets. Thus, they employed various internal validation 
techniques for assessing the model predictive ability which 
include leave-one out and leave-many-out cross validation 
techniques together with the calculation of the rm

2
(LOO) 

statistic. A high value of the rm
2

(LOO) metric increases the 
reliability of the developed model since it determines the 
extent of deviation of the predicted activity data from the 
corresponding observed activity. Among the three end points 
modeled in the work using different chemometric tools 
(primarily GFA and G/PLS), the best models were selected 
based on the rm

2
(LOO) parameter. Another work by Mitra et al. 

[49] deals with QSAR studies of antilipid peroxidative 
activity of substituted benzodioxoles using chemometric 
tools. In this work also, several models were developed 
using different chemometric tools. It was observed that the 
model developed using the G/PLS technique based on the 
charge and physicochemical descriptors yielded much lower 
value for rm

2
(LOO) (0.704) parameter although it shows a high 

value for LOO-Q2 (0.825). However a high value of rm
2

(LOO) 
[rm

2
(LOO) = 0.823, Q2 = 0.784] was obtained for the GFA 

model developed with the MSA and spatial descriptors. It 
may be explained by the fact that among the two models, the 
residual values of compound nos. 11, 12 and 15 in case of 
the former model are much higher compared to those of the 
latter one. Thus, such a difference in the observed and 
predicted activity data is well reflected in the reduced value 
of rm

2
(LOO) (0.704) for the former model. The latter model 

having the maximum rm
2

(LOO) value was selected as the best 
one for antioxidant activity prediction of benzodioxoles.  

 A recent work by Srivastava et al. [50] reports the 
quantitative structure–activity relationship of artemisinin 
derivatives leading to the development of predictive in vivo 
antimalarial activity models. In this work, the authors 
quantified the predictive ability of the best QSAR model 
based on an analysis of the rm

2 metric. They utilized several 
types of descriptors including topological, spatial, 
thermodynamic, information content, lead likeness, and E-
state indices and derived a final quantitative relationship 
between antimalarial activity and structural properties based 
on stringent internal and external validation parameters. 
However, the best reported QSAR model showed a marked 
difference in the values of R2

pred (0.876) and rm
2

(test) metrics 
(0.788). Such a variation in the values of the two parameters 
may be attributed to the increased residuals for the test set 
compounds, especially in case of compound nos. 34, 58, 137, 
144 and 161 which is well reflected in the calculation of 
rm

2
(test). Thus, the rm

2
(test) metric plays a prime role in selecting 

the best QSAR model with efficient predictive ability 

 In an estimation of predictive ability of the models for 
bioconcentration factor developed using SMILES-based 
optimal descriptors Toporov et al. [51] applied the rm

2 
statistics for selection of the final best model. They obtained 
an rm

2
(test) value of 0.657 while an R2

pred value of 0.797 for a 
developed QSAR model and reported it to be the most 
satisfactory one. A lower value of rm

2
(test) compared to the 

R2
pred parameter occurs due to high predicted residual values 

for some compounds which remains unnoticed in case of 
calculation of the R2

pred parameter.  
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 Nargotra et al. reported two different papers related to 
the development of QSAR models of piperine analogs for 
bacterial NorA efflux pump inhibitors [52] and the 
development of QSAR of aryl alkenyl amides/imines for 
bacterial efflux pump inhibitors [53]. In both the cases, the 
selection of the final most significant QSAR model was 
made based on the values of both R2

pred and rm
2. The models 

yielded acceptable values for both parameters indicating the 
statistical significance of both the developed QSAR models. 
In the two reports mentioned here, the activity of the test set 
compounds predicted using the developed QSAR models lie 
in close vicinity to the corresponding observed activity data. 
Thus in both the reports the two parameters (R2

pred and rm
2) 

are close to each other with very little numerical difference 
between themselves.  

 Again, while performing docking and 3D QSAR studies 
of protoporphyrinogen oxidase inhibitor 3H-pyrazolo [3,4-
d][1,2,3]triazin-4-one derivatives, Roy et al. [54] utilized the 
rm

2
(overall) metric as a crucial criterion for the selection of the 

best QSAR model. A wide distribution of the activity range 
of the compounds resulted in acceptable Q2 and R2

pred values 
for most of the models developed, with model M2 (modified 
to model M2a due to intercorrelation among descriptors) 
exhibiting a maximum value for the R2

pred (0.788) parameter. 
A number of compounds (compound nos. 3, 29, 31) 
predicted using model M2a exhibit a significant variation 
between the observed and predicted activity values, but this 
deviation is not reflected in the value of R2

pred. Thus, the 
R2

pred parameter is unable to explore the error in the results 
due to significant deviations between the observed and 
predicted activity data. Hence, the rm

2 statistic was utilized as 
a prime measure for the selection of the most significant 
QSAR model. Based on the value of rm

2
(overall) (0.771) 

parameter, model M3 were selected as the best one despite 
showing a reduced value for the external predictive R2 
(0.726). Moreover, the residuals calculated for the training 
and test set compounds using model M3 were much lower 
compared to those calculated using the remaining models, 
thereby reflecting the reliability of the selected QSAR model 
as the best one. 

 In a study analyzing the binding conformations and 
QSAR of combretastatin A4 (CA-4) analogs as tubulin 
inhibitors, Liao et al. [55] employed all the three rm

2 metrics 
for assessing the predictive ability of the developed QSAR 
model. Although the values of Q2 (0.666) and rm

2
(LOO) 

(0.654) were close to each other, a marked difference was 
observed between the values of R2 for the test set (0.806) and 
rm

2
(test) (0.731). This may be explained by the fact that for the 

training set compounds, the observed and the predicted 
activity data lie in close proximity to each other. However, in 
case of the test set, some of the compounds exhibit 
comparatively larger residual values which ultimately 
contributes to a lower value of rm

2
(test). Moreover, the 

rm
2

(overall) (0.713) parameter explains the overall predictive 
ability of the QSAR model (in terms of both training and test 
sets) and makes a balance between the values of the internal 
and external predictive parameters. 

 In a work involving pharmacophore mapping of 
arylamino-substituted benzo[b]thiophenes as free radical 

scavengers, Mitra et al. [56] obtained several pharmacophore 
hypotheses having statistically significant values for the 
R2

pred parameter when mapped with the test set compounds. 
For the selection of the best hypothesis, the rm

2
(test) values 

were calculated and based on the values of this parameter, 
the final model was selected and reported. In another recent 
paper by Mitra et al. [24], the authors attempted to show that 
‘true rm

2
(LOO)’ statistic calculated based on model derived 

from undivided data set with the variable selection strategy 
being applied at each cycle of leave-one-out (LOO) 
validation reflects external validation characteristics of the 
developed model thereby eliminating the need of splitting of 
the data set into training and test sets. A cytoprotection data 
of anti-HIV thiocarbamates was used as the model data 
dataset and was divided into 50 different combinations of 
training and test sets using the k-means clustering technique 
followed by further 25 different combinations by random 
selection of test set compounds. For each set the value of 
‘true Q2’ [20] was calculated. ‘True Q2’ is a measure of 
validation developed by Hawkins et al. [20] which involves 
calculation of the Q2 parameter by applying the variable 
selection strategy applied at each cycle of leave-one-out 
(LOO) validation. Based on the activity values thus 
predicted for each of the training and undivided set 
compounds, the values of ‘true rm

2
(LOO)’ were calculated for 

each of the corresponding sets. Besides these, for each of the 
combinations, the external predictive parameters were also 
calculated which include R2

pred and rm
2

(test). From an analysis 
of the results obtained, the authors reported that the value of 
‘true rm

2
(LOO)’ (0.425) calculated for the undivided dataset 

matches with the value of ‘mean rm
2

(test)’ (0.410) calculated 
from the 75 different combinations. Moreover, absolute 
difference of the ‘mean rm

2
(test)’ value (75 trials) from ‘true 

rm
2

(LOO)’ of the model obtained from the undivided data set 
was insignificant ( p ! 0.05 ). The ‘true rm

2
(LOO)’ metric thus 

reflects the criterion for external validation and thereby 
eliminates the need for splitting of the dataset in training and 
test sets when the size of the entire dataset is small. 

 Roy et al. [57] performed classical and 3D QSAR studies 
of cytochrome 17 inhibitor imidazole substituted biphenyls. 
This work aptly describes that effective splitting of the 
dataset followed by calculation of the rm

2 metrics helps in the 
right selection of the statistically most significant QSAR 
model. On comparing the results, it is observed that the MFA 
model, despite bearing a high value for R2

pred parameter 
(0.876), shows a lower value of the rm

2
(overall) parameter 

(0.820). On the contrary, the receptor shape analysis (RSA) 
model having a maximum Q2 (0.932) value and a lower 
value of R2

pred (0.853) parameter exhibits the maximum 
value for the rm

2
(overall) (0.858) parameter. This may be 

explained by the fact that the training set used for modeling 
being much larger compared to that of the test set, the value 
of the rm

2
(overall) parameter is dictated by the LOO predicted 

activity values of the training set. Thus, although the 
molecular field analysis (MFA) model bears the maximum 
value for rm

2
(test) (0.792) parameter, it experiences a reduced 

rm
2

(overall) value due to poor internal predictive power of the 
model. From these results, it may be inferred that a model 
which already suffers from poor internal predictivity may be 
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unsuitable for any future prediction of activity of untested 
molecules but such a poor predictivity is not reflected in the 
value of R2

pred parameter. Hence, selection of the best QSAR 
model based on the value of rm

2
(overall) parameter reflects both 

internal and external predictive ability of the developed 
QSAR model and thus improves its reliability for activity 
prediction of new molecules. Roy et al. [58] performed 
docking and 3D-QSAR studies of diverse classes of human 
aromatase (CYP19) inhibitors involving the application of 
the rm

2 metrics for the selection of the best QSAR model for 
this class. The GFA model built using the molecular shape 
analysis (MSA), spatial, electronic, thermodynamic and 
structural descriptors yielded a maximum value for Q2 
(0.668), but this model could not achieve the threshold value 
for the rm

2
(LOO) (0.496) parameter. This is because the 

residual activity data for several compounds was more than 1 
log unit; rm

2
(LOO), being solely dependent on this difference 

between the observed and predicted activity data, efficiently 
reflects this deviation in its value. Similarly, the GFA model 
developed using the 2D descriptors exhibited maximum 
R2

pred (0.687) and rm
2

(test) (0.657) values, however it suffered 
from unacceptable rm

2
(LOO) (0.454). Since the size of the 

training set is much larger compared to that of the test set, 
the activity predicted for the training set molecules 
influences the value of the rm

2
(overall) parameter more than the 

test set molecules. Thus, the G/PLS model developed using 
the MSA, spatial, electronic, thermodynamic and structural 
descriptors and bearing moderate values for the Q2 (0.630) 
and R2

pred (0.630) parameters but the maximum value for the 
rm

2
(overall) (0.606) parameter was selected as the best one in 

terms of both internal and external predictive potential. A 
maximum value of the rm

2
(overall) parameter signifies that the 

observed and the predicted activity data for both the training 
and test set molecules are located in close proximity to each 
other.  

 In another work, Roy et al. [59] performed pharmaco-
phore mapping, molecular docking and QSAR studies for a 
series of structurally diverse compounds as CYP 2B6 
inhibitors. For the selection of the best model, the authors 
calculated the rm

2 metrics and employed the rm
2

(overall) 
parameter for selecting the model with maximum predictive 
ability. Followed by the generation of pharmacophore 
hypothesis, QSAR analysis of the molecules was performed 
using different chemometric tools. In this work, among the 
three equations obtained, the first one developed using the 
GFA-spline option yielded the maximum value for the R2

pred 
(0.843) parameter but a lower value for the rm

2
(test) (0.676) 

metric resulting in a reduced value for the rm
2

(overall) (0.754). 
Such difference between the values of R2

pred and rm
2

(test) may 
be attributed to the fact that a difference of nearly a log unit 
exists between the observed and predicted activity data for 
some of the test set molecules (compound nos. 46 and 48) as 
determined based on this equation. Thus, it may be inferred 
that the poor predictive ability of this model is well reflected 
in the reduced value of rm

2
(test) parameter. Moreover, the size 

of the test set being small, the value of the rm
2

(overall) 
parameter is influenced to a greater extent by the variation of 
the predicted activity data of the training set compounds. On 
the contrary, the second equation developed using the GFA-
spline option exhibited the maximum Q2 (0.772) value 
together with maximum values for all the three rm

2 [rm
2

(test) = 

0.749, rm
2

(LOO) = 0.750, rm
2

(overall) = 0.774] metrics. Thus it 
implied that the activity of the compounds predicted using 
this model closely coincides with the corresponding 
observed activity data. Hence, despite having a reduced 
value for the R2

pred (0.832) parameter, the second model was 
selected as the best one for activity prediction of untested 
molecules based on the value of rm

2
(overall) parameter. In yet 

another paper, Roy et al. [60] analysed the statistical quality 
of the QSAR models based on the calculation of the rm

2 
metrics besides the traditional methods involving the 
calculation of Q2 and R2

pred parameters. Besides the docking 
results, the QSAR models developed for the aromatase 
inhibitors revealed interesting results. Among all, the third 
and fourth models developed using the GFA and G/PLS 
techniques respectively employing 3D and thermodynamic 
descriptors yielded maximum values for rm

2
(test) (0.836) and 

R2
pred (0.864) parameters respectively. But a reduction in the 

value of rm
2

(LOO) parameter for both the models (due to 
extensive deviation between the observed and predicted 
activity data of the training set molecules) lead to a decline 
in the values of the rm

2
(overall) parameter. However, the second 

model developed using the G/PLS technique employing the 
2D and thermodynamic descriptors yielded a maximum 
value for the rm

2
(overall) (0.710) metric and thus was selected 

as the best one in terms of its overall predictive ability.  

 Kar et al. [61] developed a number of QSAR models 
using the QTMS descriptors calculated at different levels of 
theory for toxicity prediction of aromatic aldehydes to 
Tetrahymena pyriformis. The developed models were 
validated using both traditional internal and external 
validation techniques in addition to calculation of the rm

2 
statistics. In this work, Kar et al. developed several 
comparable models which varied in their predictive ability 
depending on the values of internal and external predictive 
parameters (Q2 and R2

pred). The models with maximum Q2 
values yielded comparatively poorer R2

pred values and vice 
versa. Thus, the selection of the best model was done based 
on the value of rm

2
(overall) parameter. Since this parameter 

considers the prediction for both the training and test sets, it 
serves as a more stringent measure for judgment of the 
predictive potential of the developed QSAR models. Again 
while developing QSAR models for toxicity of diverse 
organic chemicals to Daphnia magna using 2D and 3D 
descriptors, Kar et al. [62] developed several QSAR models 
using different sets of descriptors based on different 
chemometric tools. Among these, the most predictive QSAR 
model was selected based on the value of the rm

2
(overall) metric 

taking into consideration the predictive ability of both the 
training and test set molecules.  

 Another work by Kar et al. [63] deals with the first report 
on interspecies quantitative correlation of ecotoxicity of 
pharmaceuticals. In this work, the authors developed 
interspecies toxicity correlation between toxicities to 
Daphnia magna (zooplankton) and fish (species according to 
OECD guidelines) assessing the ecotoxicological hazard 
potential of diverse 77 pharmaceuticals. Among the models 
developed with the Daphnia toxicity, model 7 developed 
using the G/PLS linear technique was selected as the best 
one in terms of its acceptable values for all the internal and 
external validation parameters. A comparison of models 6 
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and 7 for Daphnia toxicity revealed that model 6, despite 
bearing maximum value for Q2 (0.707) exhibited 
unacceptable value for the rm

2
(overall) (0.484) parameter. A 

difference of approximately 1 log unit between the observed 
and predicted activity data for some of the test set 
compounds accounts for such unacceptable values of the rm

2 
metrics for model 6. On the contrary, in case of model 7, a 
little difference in the values of each of the internal (Q2) and 
external (R2

pred) predictive parameters with the respective rm
2 

metric signifies that the predicted and the observed activity 
data for both the whole training and test sets are located in 
close vicinity to each other and hence the model shows the 
maximum value for the rm

2
(overall) (0.543) parameter. 

Similarly, amongst the models developed using the fish 
toxicity data as the dependent variable, model 12 developed 
using the G/PLS linear technique exhibited maximum values 
for all the internal and external validation parameters as well 
as for all the three rm

2 metrics and hence it was selected as 
the most predictive one. 

 Dashtbozorgi et al. [64] predicted air to liver partition 
coefficient for volatile organic compounds using QSAR 
approaches based on two different chemometric tools, partial 
least squares (PLS) and artificial neural network (ANN), 
followed by validation employing different internal and 
external predictive parameters. Besides the different external 
validation techniques of Golbraikh and Tropsha [21], they 
also utilized the rm

2
(test) (0.980) metric for selection of model 

with maximum external predictivity. The ANN models with 
a large value of the rm

2
(test) parameter was thus selected since 

ANN model could describe more accurately the relationship 
between the structural parameters and air to liver partition 
coefficients of volatile organic compounds. Moreover, an 
acceptable value of the rm

2
(test) parameter indicates that the 

difference between the observed and predicted activity data 
of the test set compounds is minimum. In another report, 
Golmohammadi et al. [65] studied the QSAR prediction of 
gas-to-chloroform partition coefficient using artificial neural 
network. They employed a PLS method for the selection the 
best descriptors, which were used as input neurons in neural 
network model, and selected the final model based on 
different external predictive parameters which included the 
calculation of the rm

2
(test) metric. An ANN study performed 

with these molecules yielded the final best QSAR model 
with a significant value of rm

2
(test) metric equal to 0.924. The 

result indicates a close proximity between the predicted and 
observed activity values of the test set compounds. Different 
other statistical parameters confirm superiority of the ANN 
model over the PLS model. In yet another work, 
Golmohammadi et al. [66] assessed the prediction of 
inherent viscosity for polymers containing natural amino 
acids from the theoretically derived molecular descriptors 
and reported the final best QSAR model based on the 
calculation different validation parameters including rm

2
(test). 

In this work, the descriptors chosen by genetic algorithm 
(GA) and multiple linear regression (MLR) feature selection 
techniques were used as inputs for the subsequent neural 
network. The model developed using the ANN technique 
yielded a statistically significant value of rm

2
(test) metric 

(0.921) revealing superiority of the ANN model over the 
linear model. Arkan et al. [67] reported validated QSAR 
analysis of some diaryl substituted pyrazoles as CCR2 

inhibitors by various linear and nonlinear multivariate 
chemometrics methods. For the selection of the best model, 
the authors validated the models employing different 
validation parameters. They utilized different parameters as 
reported by Tropsha [21] and Roy [22] for assessing the 
predictive ability of the developed QSAR models. Amongst 
the different linear and non-linear models developed, the 
model developed using the least squares support vector 
machine (LS-SVM) technique yielded the best results in 
terms of R2 for both the training (0.911) and test sets (0.861) 
and acceptable values for the rm

2 metrics [rm
2

(LOO) = 0.638 
and rm

2
(test) = 0.564]. The results thus show that the observed 

and predicted activity data for the test set compounds closely 
coincide with each other indicating superior predictivity of 
LS-SVM models over the other models developed in the 
work. Thus, other models, despite showing acceptable values 
of the internal predictive parameters, suffer from poor 
predictivity as reflected by the values of the modified r2 (rm

2). 
Hence, it may be stated that for closely related models 
showing comparable values for the different statistical 
parameters, the rm

2 metric serves as a crucial measure for the 
selection of the most significant QSAR model. 

 Ojha et al. [68], in their work involving the chemometric 
modeling, docking and in silico design of 
triazolopyrimidine-based dihydroorotate dehydrogenase 
inhibitors as antimalarials, selected the final best developed 
QSAR model based on the value of rm

2
(overall) preferably over 

that of R2
pred. Among the two classical QSAR models 

developed using the G/PLS spline option, the first one 
(bearing the MRp, MRm, B1p, πm, Lo descriptors) exhibited 
maximum value for rm

2
(overall) (0.733) and was selected as the 

best developed model, though the R2
pred value for the model 

(0.767) was much lower compared to the next one (0.824). 
Such an observation may be attributed to the fact that in case 
of the second model (developed using the B1p, B5o, MRp, 
B1m, πp descriptors), a significant difference exists between 
the values of R2

pred (0.824) and rm
2

(test) (0.788) parameters 
indicating a considerable deviation between the values of the 
predicted and the observed activity for the test set molecules.  

 Instead of R2
pred, rm

2
(test) has been used by Khosrokhavar 

et al. [69] as the metric for selection of most predictive 
QSAR models in their 2D QSAR study for mycotoxins using 
multiple linear regression and support vector machine. Both 
the models achieved acceptable values for all the parameters 
reported by Golbraikh and Tropsha [21] as well as the three 
rm

2 metrics. However, among the two models, the model 
developed using the regression technique is more predictive 
compared to the support vector machine (SVM) model. This 
can be inferred from the observation that in case of the MLR 
model, a few compounds exhibit a difference of more than 2 
log units between the observed and predicted activity data, 
while in case of the SVM model such a difference exists in a 
comparatively greater number of compounds. Hence the 
value of rm

2
(test) (which solely depends on the observed and 

predicted activity data of the test set molecules) is more for 
the MLR (0.894) model than that for the SVM (0.833) 
model. Goodarzi et al. [70] developed PLS and N-PLS 
(multilinear PLS) based MIA-QSTR (multivariate image 
analysis-quantitative structure-toxicity relationship) 
modeling of the acute toxicities of phenylsulphonyl 
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carboxylates to Vibrio fischeri and employed the rm
2 metric 

for assessing the predictive potential of the developed 
models. The results revealed that the rm

2 values for both the 
N-PLS and PLS models were similar, both for the training 
and test sets: 0.742 and 0.758 for the training set (N-PLS and 
PLS, respectively), and 0.584 and 0.581 for the test set (N-
PLS and PLS, respectively). The authors thus concluded that 
both the models were equally predictive in terms of the rm

2 
validation parameters. Lan et al. [71] analysed the rm

2 metric 
for the development of molecular models using d-annulated 
benzazepinones as vascular endothelial growth factor 
receptor 2 (VEGF-R2) kinase inhibitors based on 3D-QSAR 
techniques. From the results, the authors inferred that both 
the CoMFA and CoMSIA models were well predictive in 
terms of their external predictive parameter (R2

pred) but 
exhibited distinct variation when the rm

2
(test) parameter was 

calculated. A higher value of the rm
2

(test) parameter for the 
CoMFA model signified that the activity of the test set 
molecules predicted using the CoMFA model closely 
matched with the observed data. On the contrary, large 
residual values for the activity data predicted using the 
CoMSIA model may be attributed to the reduced potential of 
the CoMSIA model for activity prediction of untested 
molecules. 

 In a more recent work, Pran Kishore et al. [72] developed 
QSAR models using MFA and MSA techniques for 
adenosine receptor antagonists exploring physicochemical 
requirements for binding of pyrazolo[4,3-e]-1,2,4-
triazolo[1,5-c] pyrimidine derivatives with human adenosine 
A3 receptor subtype. Various validation measures were 
performed for the selection of the statistically significant 
QSAR models. The authors reported that the MSA model 
was the best one in terms of external predictive ability (R2

pred 
= 0.760) while the MFA model was the most significant one 
in terms of internal predictive power (Q2 = 0.762). Although 
large values were obtained for the internal predictive 
parameter (Q2), comparatively reduced values for the rm

2
(LOO) 

metric reflected that a considerable difference existed 
between the observed and LOO predicted activity data of the 
training set compounds. However, in terms of overall 
predictive ability [rm

2
(overall) = 0.593], the MFA model was 

reported to be the best one. 

 Besides these, several other studies reported by different 
authors [73-138] reveal the importance of the rm

2 metrics for 
the selection of the best QSAR models. The rm

2 parameters 
exhibit a direct comparison between the observed and 
predicted activity data of the training and test set compounds 
and these parameters offer more stringent tests than the 
classical validation parameters especially for data sets with 
wide ranges of response values [23]. Hence, these 
parameters have been used for model selection by several 
groups of researchers. Very recently [139], additional 
variants of rm

2 parameters have been proposed; however, 
these have not been covered in the present review.  

CONCLUSION 

 QSAR models have been traditionally tested for their 
predictive potential using internal (Q2) and external 
validation (R2

pred) parameters. These parameters bear 
extensive information regarding the ability of a QSAR model 

to predict the activity of untested molecules. But being 
primarily dependent on the mean activity data of the training 
set compounds, both the parameters tend to automatically 
achieve acceptable values (> 0.5) whenever a data set with a 
wide range of activity data is considered. However, such 
values may not truly reflect the extent of deviation of the 
predicted activity values from the observed ones. Therein 
lies the utility of the rm

2 metrics. It has been observed that the 
traditional internal and external validation parameters exhibit 
acceptable values as long as an overall good correlation is 
maintained between the observed and the predicted activity 
data irrespective of the actual difference between the two 
values. However, the rm

2 metrics depend chiefly on the 
difference between the observed and predicted activity data 
and convey more accurate information regarding the 
deviation between the two values. The rm

2
(LOO) parameter 

compares between the observed activity data of the training 
set compounds and their LOO predicted activity, thereby 
signifying the internal predictive ability of the developed 
QSAR model. On the other hand, the rm

2
(test) metric 

determines the proximity between the values of the observed 
and predicted activity of the test set compounds. Thus, the 
inability of the Q2 and R2

pred metrics to reflect bad 
predictions for some compounds suggests that the 
parameters rm

2
(LOO) and rm

2
(test) are stricter metrics for 

validation in comparison to the traditional ones. Moreover, 
the rm

2
(overall) metric is an unique parameter considering 

predictions for both training and test set compounds and its 
value is not obtained from prediction of limited number of 
test set compounds as is the case for R2

pred. Having the 
ability to reflect the predictive ability of the model in terms 
of both internal and external validation, the rm

2
(overall) 

parameter can be aptly utilized to identify the best QSAR 
model from among comparable models, especially when 
different models show different patterns in internal and 
external predictivity. In the present review, it has been 
reported that in several studies by different authors, the rm

2 
metrics have been utilized for the selection of the final 
QSAR models. Different authors have reported that several 
models bear unacceptable values of the rm

2
(test) parameter 

despite having statistically significant values for R2
pred. 

Moreover in several cases, comparable models were 
obtained with different patterns in Q2 and R2

pred values. Thus, 
in such case, the rm

2
(overall) parameter plays a crucial role for 

selecting the best model, well predictive in terms of both 
internal and external predictive ability. Consequently, it may 
be inferred that this new set of rm

2 parameters serve as a 
stricter metric for assessing the predictive potential of the 
developed QSAR models. Thus, in addition to the traditional 
validation parameters, tests for the rm

2 metrics should be 
carried out for a more stringent test of validation of 
predictive QSAR models, especially when a regulatory 
decision is involved. 
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